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Abstract—Scheduling algorithms in wavelength division multi-
plexing (WDM) single-hop networks aim at producing an effective
schedule in order to improve the networks’ performance. Apart
from channel assignment, the message sequencing is an important
issue that have to be addressed when designing media access con-
trol (MAC) protocols for WDM networks. Up until now, popular
approaches have not extensively addressed the order in which
the messages are scheduled even though the messages’ service
order can considerably contribute to the advance of network
performance. This paper introduces a new approach to the design
of message scheduling algorithms for WDM star networks, which
is based on the use of clustering techniques. The proposed clus-
tering oriented—earliest available time scheduling (CO-EATS)
creates groups of nodes whose messages are destined to common
nodes. The goal of the proposed CO-EATS scheme is to decrease
the probability of scheduling messages to the same destination
at successive order. The simulation results have shown that the
proposed scheme improves channel utilization and as a result it
leads to higher network throughput while it keeps mean packet
delay at low levels in comparison with conventional scheduling
algorithms.

Index Terms—Clustering, optical wavelength division multi-
plexing (WDM) networks, reservation, scheduling.

I. INTRODUCTION

T HE introduction of multigigabit applications has led
to a dramatic increase in bandwidth demands of the

emerging new generation of fiber optic local area networks
(LANs) and wide area networks (WANs). Nowadays, there is a
need for LANs supporting 100 Gbps or even higher speeds for
applications requiring bandwidth beyond existing capabilities.
These include data centers, Internet exchanges, high-perfor-
mance computing, and video-on-demand delivery [1]. Optical
networking and wavelength division multiplexing (WDM)
technology can cope with the above demands, since they can
provide gigabit-per-second data rates on independent channels
(or wavelengths) that simultaneously transmit data streams to
a single or multiple users within a single optic fiber [2], [3].
Multiplexing and demultiplexing a number of channels can lead
to significant improvement of the optical network performance.

The main classes of WDM optical networks are point-to-
point links networks, broadcast-and-select networks, wave-
length-routed networks, and passive optical networks [4]. The
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star topology using a broadcast-and-select architecture has
been shown to dominate in LANs connecting computing nodes
via two-way fibers to a passive star coupler. This star coupler
is located at the center of the network and its role is to combine
the incoming optical streams from the multiple transmitting
nodes. Subsequently, each node has to use its receiver in order
to select the desired wavelength for data reception. In general,
network nodes can transmit and receive messages on any of
the available channels employing one or more fixed or tunable
transmitter(s) (FT or TT) and one or more fixed or tunable
receiver(s) (FR or TR) [5].

Even though the passive star coupler may degrade total
throughput and security performances of a WDM broad-
cast-and-select star networks, its usage has some important
advantages [2], [6] in comparison to a switch-based approach
[7], [8]. The passive property of the optical star coupler is
important for network reliability, since no power is needed to
operate the coupler. Given that the network hub constitutes a
single point of failure, the use of a passive star coupler at this
point offers to WDM passive star networks a significant ad-
vantage in relation to switch-based networks. Other advantages
of the passive star coupler in comparison to a switch-based
solution are its natural multicasting capability, simplicity and
low cost.

An important issue in such WDM broadcast-and-select net-
works is to be specified the way that nodes transmit on the avail-
able channels [9]. Thus, a media access control (MAC) protocol
is needed to coordinate the nodes’ data transmission and prevent
collisions. In general, collisions can be characterized either as
channel collisions, in case that two or more nodes transmit on
the same channel simultaneously, or as receiver collisions, in
case that two or more nodes destine their data streams to the
same node at the same time [10]. A basic distinction among
MAC protocols is based on the existence of a channel which is
characterized as control channel. More specifically, in the pre-
allocation-based protocols, there is no control channel, while
in the pretransmission coordination-based protocols a control
channel is used for nodes’ coordination before their actual data
transmission. As depicted in Fig. 1, the preallocation-based pro-
tocols are further divided into fixed-assignment or static access
and random access protocols while the pretransmission coordi-
nation-based protocols can be characterized either as with re-
ceiver collisions or as without receiver collisions according to
whether or not prevent receiver collisions [2]. Representatives
of MAC protocols that allow receiver collisions can be found
in [11]–[14], while [15]–[23] present pretransmission coordi-
nation-based protocols without receiver collisions.
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Fig. 1. Classification of MAC protocols according to the existence of control channel.

In this paper, we focus on pretransmission coordina-
tion-based protocols without receiver collisions for vari-
able-length message transmission. In such protocols, a way
to eliminate receiver collisions is to design a scheduling
algorithm which address two crucial issues, namely the mes-
sage sequencing and channel assignment issues. Among the
well-known, efficient scheduling algorithms for local area
WDM networks with broadcast-and-select architecture are the
earliest available time scheduling (EATS) [15], the receiver
oriented-earliest available time scheduling (RO-EATS) [16],
and the minimum scheduling latency (MSL) [17]. EATS ad-
dresses the channel assignment without, however, handling
message sequencing, since it schedules messages according
to their arrival order and ignores the fact that the messages’
service order may affect the network’s performance. RO-EATS
comes as an extension of the EATS and its core idea is to pri-
oritize messages that are destined to the least used destination
nodes. MSL modifies the actual choice of transmission data
channel on the basis of the minimum scheduling latency, i.e.,
the channel for which the shorter time interval will pass from
the time it becomes available. Although both RO-EATS and
MSL deal with message sequencing issue, they do not prevent
the messages’ scheduling to the same destination at successive
order which increases the messages’ schedule length resulting
in limited channel utilization.

A. Contribution

This paper introduces a new algorithm that deals with the
message sequencing issue based on the clustering [24] of the
network’s nodes. The proposed clustering oriented—earliest
available time scheduling (CO-EATS) organizes the network’s
nodes into clusters according to the destination of their mes-
sages. In general, clustering aims at creating groups of items,
i.e., clusters on the basis that items assigned to the same cluster
are “similar” to each other and “dissimilar” to the nodes be-
longing to other clusters [24]. In our framework, CO-EATS
groups together nodes with common message destination.
Thus, given that each cluster will consist of nodes which prob-
ably destine their messages to common destination, CO-EATS
defines the message sequencing choosing for transmission
nodes belonging to different clusters. In this way, it decreases
the probability of scheduling messages to the same destination
at successive order. As a result, the schedule length is reduced
and the network performance is upgraded.

More specifically, the proposed algorithm is inspired by the
observation that scheduling consecutive messages to the same
destination node may not fully use the available channels.
Thus, it is necessary to enhance the aforementioned traditional
schemes with an efficient message sequencing mechanism
which would distinguish consecutive messages destined to the
same node. Clustering network nodes on the basis of their des-
tination provide us with the necessary mechanism. Therefore,
discovering groups of nodes with common message destination
and scheduling their messages properly could lead to higher
network performance without aggravating the mean packet
delay.

Data clustering is a common technique for data analysis,
which is used in many fields, including Web data mining [25],
[26], image analysis [27], and bioinformatics [28]. Especially
on the Web, many research efforts have focused on grouping
users that present similar access behavior [29], [30]. Collecting
information about users’ behavior and extracting their usage
patterns can be quite important for providing dynamic Web
content, for effective Web site structuring and management, as
well as, for improving specific applications such as e-commerce
via pages’ caching and prediction.

The remainder of this paper is organized as follows. Section II
provides the network background, while Section III presents
related message scheduling MAC protocols. Clustering back-
ground is given in Section IV. Our new scheduling algorithm is
described in Section V, while Section VI discusses the simula-
tion results. Conclusions are given in Section VII.

II. NETWORK BACKGROUND

Consider a single-hop, broadcast-and-select WDM star net-
work consisting of nodes and channels (wavelengths),
where is the set of the data channels, while
one channel is used for coordination (i.e., control channel).
Given that each of the network’s nodes can either transmit
a message or receive more than one messages, the sets

and denote the source and des-
tination nodes (e.g., and , where , refer to the
same node, which in the first case behaves as source while in
the second case as destination node). Each source node
is provided with a fixed-tuned transmitter (FT) for the control
channel and with a tunable transmitter (TT) for the data chan-
nels. These are connected to a 2 1 combiner before reaching
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Fig. 2. Network architecture.

Fig. 3. Control and data phases.

the passive star coupler via an optical fibre. The out-
puts of the star coupler are connected via separate fibres to
the destination nodes , which are equipped with 1 2 split-
ters that separate the data from the control channel. The con-
trol channel is connected to a receiver that is fixed-tuned to this
channel (FR), while the data channel is led to a tunable receiver
(TR) capable of tuning over the whole range of available data
channels. Hence, the system is CC-FTTT-FRTR as it is depicted
in Fig. 2.

In the above CC-FTTT-FRTR implementation, each trans-
mission frame is divided into two phases, namely the control
and data phase as illustrated in Fig. 3. During the control phase,
a source node sends its control packet to the common con-
trol channel in a TDM-fashion, while during the data phase the
real message transmission takes place. The nodes are assumed
to generate messages of variable lengths which can be divided
into several equal-sized packets. Each packet is transmitted in
time equal to a timeslot.

Example 1: According to the Fig. 3, the source node identi-
fied as requests during the control phase the transmis-
sion of a message whose length is 2 to the destination node ,

while the node requests the transmission of a 1-length mes-
sage to the node . As a result, during the data phase, we can see
two packets to be scheduled on the data channel occupying
the timeslots and being destined to the node , while the
1 packet to the node is scheduled on the channel during
the timeslot .

In such a network, it is obvious that two or more source
nodes might cause either channel collision, transmitting mes-
sages on the same data channel simultaneously, or receiver col-
lision, transmitting messages destined to the same node simul-
taneously. Thus, in order to avoid collisions two tables are used
on each node, namely the receiver available time RAT and the
channel available time CAT tables [31]. The RAT table con-
sists of elements, where RAT , implies
that destination node will be available after timeslots. If
RAT , then node is currently idle and no reception is
scheduled for it. The CAT table consists of elements, where
CAT , , denotes that channel will be avail-
able after timeslots. If CAT , then data channel is
currently available. RAT and CAT are needed to avoid receiver
and channel collisions, respectively.

A MAC protocol handles the above issues and runs a
scheduling algorithm at the end of the control phase in each
frame. The goal of the scheduling algorithm is to produce a

scheduling matrix , where denotes the length on the
schedule in timeslots. Each element, and

, represents the destination node that receives a
message on channel during the timeslot . Fig. 3 provides
an example of such a scheduling matrix.

III. RELATED VARIABLE-LENGTH MESSAGE SCHEDULING

MAC PROTOCOLS

A well-known scheduling algorithm for such a network is the
earliest available time scheduling (EATS) [15]. The core idea
of EATS is to assign a message to the data channel that has
the earliest available time among all the network data channels.
Once the data channel is assigned, the algorithm proceeds to the
message schedule as soon as that channel becomes available.
EATS uses the aforementioned RAT and CAT tables in order
to keep a record of the channels and receivers state. With this
global information in each node, the distributed EATS operates
as follows: transmit a control packet on the control channel;
select the channel with the earliest available time; define the
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transmission schedule based on RAT and CAT; and update these
tables according to the last scheduled message. The algorithm
produces the scheduling matrix operating in time linear
on the number of nodes and channels .

The receiver oriented-earliest available time scheduling
(RO-EATS) protocol [16] employs the same system structure
and network service as EATS. The difference between the two
protocols is that RO-EATS considers not only the transmission
channel, i.e., channel assignment, but also the transmission
order of the corresponding messages declared during the con-
trol frame, i.e., message sequencing. RO-EATS is executed by
all nodes when they receive the entire control frame (not only
a part of it like EATS). This algorithm also uses the RAT and
CAT and more specifically sort the RAT table in ascending
order so as to schedule the message which is destined to the
least visited destination node. In practice, it first considers the
earliest available receiver among all the network nodes and
then selects the message which is destined to this receiver from
those which are ready and identified by the control frame. Then,
a data channel is selected and assigned to the message that is
to be scheduled based on the sorted RAT and following the
EATS logic. RO-EATS achieves higher throughput and lower
average message delay in comparison with EATS. However, its
complexity is higher than this of EATS due to the RAT sorting.

The minimum scheduling latency (MSL) protocol [17] se-
lects the channel with the minimum scheduling latency. Sim-
ilarly to EATS, the MSL is executed by all nodes after the re-
ception of each control packet. In this manner, MSL starts the
construction of the transmission schedule after the reception of
the first node. The main idea of MSL is that, instead of always
selecting the earliest available channel, it selects the available
channel optimally by taking into account the destination avail-
ability. Hence, the difference with EATS concerns the way that
the transmission channel is selected. EATS selects the trans-
mission channel with the minimum CAT, while MSL selects
the channel with the minimum scheduling latency. The MSL
scheme has higher processing requirements but improves the
performance of EATS and RO-EATS in terms of mean packet
delay and channel utilization.

IV. CLUSTERING BACKGROUND

For the clustering process, the sets and are organized into
an message table , whose element,
and , indicates the length of the message from
the source node to the destination node . Given that each

node can transmit a message per frame, it is obvious that
the th row of the table will have one nonzero value. On
the other hand, the th column of the table can have more
than one nonzero values indicating that each node can receive
more than one messages. Under this notation, each node is
considered to be a multivariate vector consisting of values and
could be denoted as follows:

A clustering of is a partition of into disjoints
sets, i.e., clusters , that is, and

for all . The clusters

consist of members (i.e., source nodes) re-
spectively. Nodes assigned to the same cluster are “similar”
to each other and “dissimilar” to the nodes belonging to other
clusters in terms of the destination of their messages. The
membership of a node , where , to a cluster ,
where , is defined by the function as follows:

if
otherwise.

Based on the above, it is apparent that similarity is funda-
mental to the definition of a cluster. Thus, a measure of the
similarity between two patterns (in our case source nodes’ pat-
terns) is essential to most clustering approaches. In practice, it
is most common to calculate the dissimilarity between two pat-
terns using a distance measure. However, because of the variety
of distance measures, patterns’ representation plays a major role
to the selection of distance measure [24]. Conventionally, pat-
terns are represented as vectors whose values can be either quan-
titative (continuous values, e.g., weight, discrete values, e.g., the
number of visits of a Web user or interval values, e.g., the du-
ration of an event) or qualitative (nominal, e.g., “red” or ordinal
e.g “cool”).

Since our nodes’ patterns are represented as vectors with dis-
crete values, we will focus on the Squared Euclidean distance,1

which is a well-known and widely used distance measure in the
vector-space model [24], [26]. Therefore, the evaluation of the
dissimilarity between two source nodes, e.g., can be
expressed by the distance of their vectors. Therefore,
denotes the Squared Euclidean distance of the nodes’ vectors

and

Let us consider an arbitrary cluster , , of the
set . The representation of cluster when clustering process

is applied to it, collapses the nodes belonging to into a
single point (e.g., the mean value which does not correspond to
an existing node). This point is called cluster’s representative
(also known as centroid) since each node is represented
by . Given the vectors of , the vector of is defined
as follows:

Since both and are vectors, their dis-
similarity is measured by their squared Euclidean distance

). Considering all clusters, the clustering process is
guided by the objective function which is defined to be the
sum of distances between each source node and the representa-
tive of the cluster that the node is assigned to

1The squared Euclidean distance uses the same equation as the Euclidean
distance, but does not take the square root. For two points � � �� � � � � � � �
and � � �� � � � � � � � in �-space, their squared Euclidean distance is defined
as: �� � � � .
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Fig. 4. CO-EATS overview.

Based on the above we can define the network nodes clus-
tering as follows: Given a network with a set of source
nodes whose messages to destination nodes (set ) are or-
ganized in an message table , the integers and ,
and the objective function , find a clustering of into
clusters such that the is minimized. A that minimizes
groups together nodes from the set that probably destine their
messages to the same nodes of the set .

For the purpose of our clustering, we employed the
well-known and widely used K-means partitional clustering
algorithm [32]. K-means classifies a given dataset to a certain
number of clusters, e.g., fixed a priori. Although K-means
does not provide approximation guarantees, it is widely used
because it is efficient and it works very well, in practice.
K-means algorithm in summary is: given points to be clus-
tered, a distance measure to capture their dissimilarity and
the number of clusters to be created, the algorithm initially
selects random points as clusters’ centers and assigns the
rest of the points to the closest cluster center (according
to ). Then, within each of these clusters the cluster rep-
resentative (also known as centroid or mean) is computed and
the process continues iteratively with these representatives as
the new clusters’ centers, until convergence.

V. THE PROPOSED ALGORITHM

The proposed CO-EATS is a two-step process which firstly
handles the message sequencing and then deals with channel
assignment based on the EATS algorithm as depicted in Fig. 4.
The core idea is that message sequencing should take into ac-
count the messages’ destination. The proposed algorithm aims
at grouping together nodes from with common destination.
The goal is that messages to the same destination should not be
scheduled in a successive order. Thus, CO-EATS schedules in
sequence messages from nodes belonging to different clusters.
Furthermore, CO-EATS prioritizes clusters as well as the mem-
bers on each clusters according to the length of their messages.

More specifically, during the first step, i.e., clustering step, we
employ the K-means in order to produce the clustering of .
Then, given the and the message table , we sort the mem-
bers on each cluster according to the length of their messages.
More specifically, given that each node , where ,

transmits a message per frame, clusters’ members sorting gives
priority to the nodes with long-length messages. Similarly, using
the table which consists of the clusters representatives’
vectors , where , the is
computed in order that we prioritize the clusters with longer
messages. In this case, given that vectors may con-
tain more than one nonzero values we sort them according to
their length, i.e., . A vector’s length is more in-
dicative than the sum of its values for revealing the information
that CO-EATS needs, i.e., the vectors with high values. For ex-
ample, given the vectors (1,1,1) and (3,0,0), their elements sum
is 3, while their lengths are and 3 respectively which means
that the second vector will have priority over the first one in the
service order. Then, the calculated and are
used in order that the message sequencing will be defined. Once
the is formed, the algorithm proceeds to the
second step called the channel assignment step. The goal of the
function is to form the scheduling ma-
trix using the EATS algorithm.

Algorithm 1 The CO-EATS flow control

Input: A set of nodes organized in an message table
, the upper bound on nodes’ requests and the number of

clusters .

Output: The scheduling matrix .
1: .
2: .
3: .
4: .
5: .
6: .
7: .

Theorem 1: The CO-EATS has time complexity
.
Proof: During the clustering step we employ the K-means

algorithm (line 2) whose time complexity is , where
is the number of nodes, the number of clusters to be cre-

ated and the number of iterations that takes the algorithm to
converge. However, both and are relatively small com-
pared to the number of nodes , and, thus, their contribution to
the algorithm’s complexity can be ignored [24]. Thus, the
clustering is computed in time linear on the number of nodes:

. The functions (lines 3 and 4) sorts the nodes
and clusters’ representatives in time.
The function (line 5) takes time to ar-
range the messages from the nodes according to the
and . The total time complexity of the clustering step
is, thus, which becomes

, since is relatively small compared to the number
of nodes . During the second step, the
function (line 6) needs time [15] to form the scheduling
matrix , where is the number of channels. As a result, the
total complexity of CO-EATS is .

To facilitate the comprehension of the proposed scheme,
let us consider a network consisting of the source nodes

, the data channels
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TABLE I
BASIC SYMBOLS’ NOTATION

TABLE II
TABLE ������� BEFORE MEMBERS’ SORTING

and having the upper bound of nodes’ messages length
packets. Then, a 8 8 message table could be the following:

Example 2: In the above message table , the fact that
means that the source node sends a message of

length 4 to the destination node . Node , as well as node ,
will receive two messages, while and have no messages
to transmit.

Applying the K-means algorithm for in the above
message table results in which
can be represented by the following table.

From Table II, it holds that , while
. As we discussed in Section IV, it is obvious

that places to the same cluster source nodes which are similar
in terms of their destination nodes, e.g., the nodes and
destine their messages to the node , while and to the
node . Given that we chose and , consist of
actually similar nodes, the rest of the nodes, i.e., , , , and

are forced to be placed to the same remaining cluster, i.e.,
. Then, sorting the members on each cluster according to the

length of their message results in swapping the nodes of .
Therefore, the Table II is updated as follows.

Given the above clustering that K-means algorithm pro-
duces, the clusters representatives’ message table is

TABLE III
TABLE ������� AFTER MEMBERS’ SORTING

TABLE IV
SCHEDULING MATRIX � PRODUCED BY CO-EATS

TABLE V
SCHEDULING MATRIX � PRODUCED BY EATS

formed according to the vectors of clusters’ members

Sorting provides our algorithm with the following ser-
vice order: since ,

and . To this point, given that
each cluster consists of nodes with probably the same destina-
tion, our scheme should separate them taking, at the same time,
into account the result of sorting. Therefore, the mes-
sage sequencing is defined as instead
of the sequential one .

Table IV depicts the scheduling matrix produced by the
proposed CO-EATS algorithm when the transmitters/receivers
tuning time is set to 1 and the propagation delay of messages
is set to 2. On the other hand, Tables V–VII represent the
scheduling matrix in case that the EATS, RO-EATS, and
MSL algorithms are employed respectively. Based on these
tables, the channel utilization providing by the CO-EATS is
71.4%, which is significantly improved in comparison with
EATS whose channel utilization is 55.6%, as well as with that
of RO-EATS and MSL which both provide 62.5% utilization.
In terms of the mean packet delay the observed values are
2.6 (CO-EATS), 3.2 (EATS), 2.8 (RO-EATS), and 2.8 (MSL)
timeslots, which means that the proposed scheme is presented
to have similar performance with the RO-EATS and MSL while
it clearly outperforms the EATS.

VI. SIMULATION RESULTS

To evaluate the proposed algorithm, we carried out experi-
mentation where we compare CO-EATS with EATS, RO-EATS,
and MSL. More specifically, the experiments are conducted
using a discrete-event simulator implemented in C environment.
We experimented with different number of nodes , channels

, and clusters , while we also evaluated the algorithms’
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TABLE VI
SCHEDULING MATRIX � PRODUCED BY RO-EATS

TABLE VII
SCHEDULING MATRIX � PRODUCED BY MSL

performance under different traffic load , where expresses
the maximum message length requested per node per frame.
The performance of the compared algorithms is measured in
terms of network throughput and mean packet delay.

Let us suppose that denotes the network throughput while
represents the line transmission rate per channel in Gbps. Then,
given that represents the schedule’s length and the message

table, the network throughput is defined as follows:

(1)

On the other hand, the mean packet delay is defined as the time
required for a head-of-line packet in the waiting queue to gain
access to the medium (MAC delay) [33].

The simulation results are produced according to the fol-
lowing approximations.

1) The transmitters/receivers tuning time is set to 1 and the
propagation delay of messages is set to 2.

2) The line transmission rate per channel is set to
[34].

3) The outcome results from 10000 transmission frames.

A. Data Generation

For the purpose of our experimentation, we have generated
data based on three distinct models. According to the first
model, namely the model , it is assumed that the packet
arrival process at each of the queues follows Uniform distri-
bution. In practice, the source nodes , where ,
may send messages of 0 to length (both included) on each
frame with equal probability. Moreover, the traffic pattern is
uniform, i.e., a message is destined to every other node ,
where , with equal probability.

According to the second model, i.e., model , it is assumed
that the packet arrival process follows a Poisson process. In gen-
eral, the Poisson distribution of the number of packets arriving
at a specific queue per frame is defined as

(2)

where is the probability of packets being assigned
to a specific queue during a specific frame whereas is the ex-
pected number of packets being assigned to this queue during
this frame.

Based on the above, we proceed to the nodes load patterns’
generation defining three classes of nodes in order to simulate
a more realistic environment. More specifically, each node is
assigned to a class with equal probability and characterized as
light, medium or heavy according to its traffic load. The values
of for these three classes are defined as , , and ,
respectively [18].

The third model, namely the model , assumes self-similar
traffic, since recent studies have revealed that LAN traffic is sta-
tistically self-similar or long range dependent in nature (i.e.,
bursty over a wide range of time scales) [35]. Among several
methods used for generating self-similar synthetic traces [36],
[37], we employ the well-known ON/OFF model, which as-
sumes ON periods during which packets are sending at fixed
rate, whereas OFF periods are idle [38], [39]. The length of ON
and OFF periods is Pareto distributed. According to [40] sug-
gestion, we use multiple aggregated Pareto sources, in our case
16 [41], with a Hurst parameter equal to 0.9 [35].

B. Experimentation Under Uniform and Poisson Traffic

Fig. 5(a) and (b) depicts the network’s throughput as a func-
tion of the number of nodes for , while
the traffic load is set to following the model and

, respectively. The number of channels is set to and
the number of clusters is set to . Defining
we succeed in not scheduling consecutive messages to the same
destination, since we choose to transmit messages from nodes
belonging to different clusters. These messages probably have
different destinations. The throughput improvement in case of
the CO-EATS algorithm proves that its schedule length is re-
duced. It is apparent that for all values of the CO-EATS pro-
vides steadily higher throughput compared to EATS, RO-EATS,
and MSL.

Indicatively, under model and for nodes, the net-
work throughput provided by CO-EATS is improved as much
as 13.4% over EATS, 15.3% over RO-EATS and 7.1% over
MSL. Under model and for nodes, the improve-
ment of CO-EATS over EATS, RO-EATS and MSL are of the
level of 11.4%, 13.4%, and 5.4%, respectively. It should be
noticed that these are the maximum observed improvements,
which were expected to be noticed for a high value of , since
the ratio between and significantly contributes to the per-
formance of CO-EATS. This is confirmed by the minimum ob-
served differences, which occur for , where the contri-
bution of the clustering is of no value, i.e., each node constitutes
a cluster. Overall, we can claim that independent of the number
of nodes and traffic pattern the proposed approach is superior
since it creates a shorter schedule which advances the network’s
throughput.

The second system metric which is important to be evaluated
is the mean packet delay. To this point, we should make clear
that all algorithms have almost the same performance in terms
of mean packet delay, while the proposed scheme is clearly and
steadily improved in the context of network throughput. More
specifically, on the basis of mean packet delay, CO-EATS be-
haves better in comparison with the EATS without, however,
overcoming the performance of RO-EATS and MSL. This is ex-
pected since the significant throughput improvement results in
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Fig. 5. Network throughput as a function of the number of nodes for � � ��

channels, traffic load � � ��, and ��� � �� clusters. (a) Uniform traffic;
(b) Poisson traffic.

a minimal mean packet delay cost when the number of nodes
are increasing. For this part of experiments, we keep the same
values of traffic load, i.e., and number of clusters and
channels, i.e., as previously, while we vary the
number of nodes setting .

Thus, according to Fig. 6(a) and (b), which represents the
mean packet delay as a function of the network’s throughput
in case of models and , respectively, it is obvious that
for 20, 30, 40, all schemes provide almost the same
levels of throughput-delay performance. However, for ,
CO-EATS succeeds in obtaining higher throughput while
causing either lower or slightly higher delay compared to the
rest schemes. Indicatively, in Fig. 6(a), for nodes,
CO-EATS offers 147.7 Gbps throughput causing 32.7 timeslots
as mean packet delay, while the respective values for EATS are
127.9 Gbps and 35.6 timeslots, for RO-EATS 125.1 Gbps and
31.3 timeslots and for MSL 137.2 Gbps and 30.8 timeslots. On
the other hand, in Fig. 6(b), for nodes, the proposed

Fig. 6. Mean packet delay as a function of the network throughput for � � ��

channels, traffic load � � ��, and ��� � �� clusters. (a) Uniform traffic;
(b) Poisson traffic.

CO-EATS with 139.6 Gbps significantly outperforms the EATS
with 123.7 Gbps, as well as the RO-EATS with 120.9 Gbps and
MSL with 132.1 Gbps. In this case the observed delay values
are 29.4, 31.4, 27.5, and 27.0 timeslots for CO-EATS, EATS,
RO-EATS and MSL, respectively. In all cases, it is apparent
that there is a trade-off between the improved throughput and
the minimal delay cost.

Given that the proposed scheme achieves high throughput
levels, we evaluated network throughput under different number
of channels and the results are illustrated in Fig. 7(a) and (b). For
this experimentation, we fixed the number of nodes at ,
while we set the traffic load to . The number of channels
are set to 5, 10, 15, 20, while the number of clusters are
varied accordingly in order that . More specifically,
Fig. 7(a) shows the network throughput versus the number of
channels under uniform traffic, i.e., model , while Fig. 7(b)
depicts the network throughput versus the number of channels
under poisson traffic, i.e., model . Based on these figures, we
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Fig. 7. Network throughput as a function of the number of channels for � �

�� nodes, traffic load � � ��, and ��� � � clusters. (a) Uniform traffic;
(b) Poisson traffic.

can see that in case of all algorithms the network throughput
is increasing as the number of channels increases and this is
natural, since the more network channels the shorter schedule
length. In practice, there is more time space for nodes messages
to be scheduled. It is remarkable that CO-EATS offers higher
throughput in comparison with the rest algorithms for both uni-
form and poisson traffic, while its performance is getting better
as the network channels increase.

In Fig. 8(a) and (b), the network throughput is presented as a
function of the traffic load. As discussed, the traffic load is ex-
pressed by the parameter , which indicates the upper bound of
messages’ length in packets (or equivalently in timeslots), under
both model and . In this group of simulation, we carried
out experiments with 10, 15, 20, 25, 30, while we fixed the
number of nodes at and the number of channels and clus-
ters at . The proposed algorithm is presented to
be steadily superior in comparison with EATS, RO-EATS, and
MSL for both uniform and poisson traffic, while it is important
to notice that its behavior is improved as the load is increasing.

Fig. 8. Network throughput as a function of the traffic load for � � �� nodes,
� � �� channels, and ��� � �� clusters. (a) Uniform traffic; (b) Poisson
traffic.

Given that the proposed algorithm aims at grouping together
nodes with the same message destinations it was challenging
to study its performance under different number of clusters.
Thus, in the last section of simulation, we evaluated network
throughput under different values of . In the previous exper-
iments, we define and we explain that this assump-
tion prevents CO-EATS of scheduling consecutive messages to
the same destination. Thus, in Fig. 9(a) and (b), the number of
nodes is fixed at , the network load is , while the
number of channels was set to . Under these parameters,
we varied the number of clusters setting 18, 20, 22, 24.

What we can first comment based on Fig. 9(a) and (b) is that
the performance of EATS, RO-EATS and MSL is independent
of the number of clusters as it is expected. MSL outperforms
EATS and RO-EATS, however, all three algorithms present low
performance in comparison with CO-EATS both under uniform
[Fig. 9(a)] and poisson traffic [Fig. 9(b)]. On the other hand,
it is clear that CO-EATS reach its maximum performance for
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Fig. 9. Network throughput as a function of the number of clusters for � �

�� nodes, � � �� channels, and traffic load � � ��. (a) Uniform traffic;
(b) Poisson traffic.

, i.e., for . This observation confirms our in-
tuition about the appropriate value of . However, we should
notice that even though CO-EATS achieves higher throughput
for it is remarkable that it is superior in comparison
with the rest schemes for any value of .

C. Experimentation Under Self-Similar Traffic

The performance of the proposed CO-EATS scheme under
the self-similar model,i.e., model , is depicted in Figs. 10–13.
As it has been already mentioned, according to model , the
aggregate traffic is generated by multiplexing 16 independent
on-off Pareto sources on each network node. Each such source
alternates at certain time intervals between an ON state, when
a burst of packets is transmitted, and an OFF or idle state. All
simulations results obtained defining the Hurst parameter to be
equal to 0.9, since it has been shown from statistical tests that

Fig. 10. Self-similar traffic: Network throughput as a function of the number
of nodes for � � �� channels and ��� � �� clusters.

Fig. 11. Self-similar traffic: Mean packet delay as a function of the network
throughput for � � �� channels and ��� � �� clusters.

real LAN traffic is self-similar with about 0.9 value of Hurst
parameter [35].

The results obtained using self-similar model are very similar
to the ones obtained under uniform and poisson models. Figs. 10
and 11 confirm the superiority of the proposed scheme, since
it is apparent that for any number of network nodes CO-EATS
achieves a higher throughput-delay performance compared to
EATS and RO-EATS. Although the superiority over MSL is
marginal, it should be noticed that MSL runs in time ,
which is significantly higher compared to of
the CO-EATS. The results of Figs. 12 and 13 stand for dif-
ferent number of channels and clusters, respectively. The per-
formance trends indicate that CO-EATS succeeds in providing
higher throughput under self-similar traffic. Especially in case
of Fig. 13, it is crucial to pinpoint that CO-EATS reaches its
maximum performance for .

The observations about the number of clusters, obtained from
Figs. 9(a) and (b) and 13, justifies the choice of the clustering
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Fig. 12. Self-similar traffic: Network throughput as a function of the number
of channels for � � �� nodes and ��� � � clusters.

Fig. 13. Self-similar traffic:Network throughput as a function of the number of
clusters for � � �� nodes and � � �� channels.

scheme instead of an approach which would simply sort nodes
on the basis of their destination. The sorting solution would lead
to unknown number of groups, in the worst case to groups,
which would degrade the performance of the proposed scheme,
while employing the clustering solution provides the protocol
the advantage of fixing a priori the desired number of clusters.
Overall, in our framework, a clustering scheme provides more
information compared to a sorting scheme, since using a combi-
nation of clustering and sorting provides groups of sorted nodes.
This is achieved with no extra computational cost, since the clus-
tering step has the same complexity with sort procedure, i.e.,

.

VII. CONCLUSION

This paper introduces a new class of message scheduling
algorithm for WDM star networks, which addresses both the
message sequencing and channel assignment issues by making
use of clustering techniques. The proposed CO-EATS deals

with the message sequencing using a clustering approach
which aims at grouping together network’s nodes that send
their messages to common destination nodes. Based on the
produced clusters, the CO-EATS manages to avoid scheduling
consecutive messages to the same destination which harms the
channels’ utilization. The proposed algorithm has been evalu-
ated under uniform, poisson and self-similar traffic for different
number of nodes, channels and clusters as well as for different
network load. The simulation results clearly show that the pro-
posed scheme considerably upgrades the network performance
in comparison with the EATS, RO-EATS, and MSL algorithm.
In terms of the mean packet delay, CO-EATS behaves better
compared to the EATS without, however, overcoming the
performance of RO-EATS and MSL. This is expected since
there is a tradeoff between the improved throughput and the
minimal delay cost.

The use of clustering algorithms can be the base of a new
generation of high performance message scheduling algorithms
for optical networks. We are currently working in this direction.
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